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Abstract
This article discusses regression analysis of right-censored failure time data where
there may exist a cured subgroup, and also covariate effects may be varying with
time, a phenomena that often occurs in many medical studies. To address the problem,
we discuss a class of varying coefficient transformation models along with a logistic
model for the cured subgroup. For inference, a sieve maximum likelihood approach
is developed with the use of spline functions, and the asymptotic properties of the
proposed estimators are established. The proposedmethod can be easily implemented,
and the conducted simulation study suggests that the proposed method works well in
practical situations. An illustrative example is provided.

Keywords Cure model · Maximum likelihood estimation · Regression analysis ·
Spline smoothing

1 Introduction

Failure time data commonly occur inmany areas such as economic andmedical studies
as well as social science, and a large literature has been established for their analysis
(Kalbfleisch and Prentice 2002; Klein and Moeschberger 2003). In a typical failure
time study, an underlying assumption is that every subject in the study is susceptible
to the event of interest. In reality, however, this may not be true. For this situation,
we usually say that there exists a cured subgroup, and in this paper, we will discuss
regression analysis of such failure time data.

Somemethods have been developed for the analysis of failure time datawith a cured
subgroup (Choi et al. 2014; Demarqui et al. 2014; Kuk and Chen 1992; Zeng et al.
2006). For example, one of the early works was proposed by Farewell (1982), who
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considered the logistic model to estimate the cured probability. Lu and Ying (2004)
gave some estimating equation approaches for the failure times arising from linear
transformation models, and Lu (2010) investigated the problem under the accelerated
failure time model. In addition, Wang et al. (2012) considered the nonparametric
spline estimates for both nonsusceptible and susceptible individuals, and Chen et al.
(2013) discussed the association estimation for clustered failure time data. The point
is that all methods mentioned above assume that covariate effects are constant or
time-independent, and it is apparent that this may not be true.

Varying coefficient models have been discussed under many different contexts
including nonparametric regression, generalized linear models, nonlinear time series
models, and longitudinal and functional data analysis (e.g., Hastie and Tibshirani
1990; Fan and Zhang 1999; Cai et al. 2000; Fan et al. 2006; Cai et al. 2007). For
these situations, a primary assumption is that treatment effects are usually nonlinear
or time-dependent. Chen and Tong (2010), among others, developed a class of varying
coefficient transformation models for regression analysis of failure time data, in the
absence of a cured subgroup. In this article, we present a varying-coefficient mixture
model that allows covariates to interact with each other nonlinearly, for both suscepti-
ble and nonsusceptible subjects. The features of the kidney transplant data (Klein and
Moeschberger 2003) are the possible existence of a cured subgroup and non-linear
interaction of gender or race in terms of age. In Sect. 6, we find that the data has
a nonsusceptible subgroup and cross survival curves. We believe that varying coef-
ficients achieve the purpose of capturing the non-linearly changing effect of gender
to age or race to age, and a cure rate achieves the purpose of capturing the existing
nonsusceptible subgroup.

The rest of the article is organized as follows. InSect. 2,wefirst introduce somenota-
tion and assumptions and describe the assumed models. A sieve maximum likelihood
estimation procedure is then developed in Sect. 3, and an adaptive EMalgorithm is also
provided for determining the proposed estimator. Section 4 establishes the asymptotic
behavior of the proposed estimator, and Sect. 5 gives some results of a simulation
study for evaluating the finite sample performance of the proposed method, indicating
that the proposed method works well. Section 6 provides an illustrative example, and
Sect. 7 gives some discussion and concluding remarks.

2 Notation, models and assumptions

Consider a failure time study that may include a cured subgroup and let T denote the
underlying failure time of interest. In the following, we assume that T can be described
as

T = η T ∗ + (1 − η)∞ . (1)

In the above, T ∗ denotes the failure time for the subject who is susceptible to the failure
event of interest and η takes values 1 or 0 indicatingwhether a subject is susceptible (by
1) or not. Themodel above is commonly referred to as the two-componentmixture cure
model (Farewell 1982; Kuk and Chen 1992), assuming that the population consists of
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an uncured group and a cured group. One advantage of model (1) is that it is intuitively
attractive and gives easy interpretations. An alternative to model (1) is the so-called
promotion time cure model, which formulates both cured and noncured subjects in
a single survival function and focuses on the combined population (Yakovlev and
Tsodikov 1996; Tsodikov 1998).

To model T ∗, let (X , Z , W ) denote the covariates with X being a p-dimensional
vector and Z and W being scalars. We will assume that T ∗ follows the following
varying coefficient model

log H(T ∗) = −X T β − Zψ(W ) + ε . (2)

Here H(.) is an unknown, strictly increasing function with H(0) = 0; ψ(.) is also
an unknown function, β denotes regression parameters, and ε is the error with a
known continuous density function fε , which is assumed to be independent of the
covariates. Note that Z denotes the covariate that, for the given values of W , has a
linear relationship with the mean of the response variable log H(T ∗). Also note that Z
can include the intercept term, that is Z = (1, Z∗)T , where Z∗ is a scalar variable of
interest;ψ(W ) = (ψ1(W ), ψ2(W ))T is a two-dimensional unknown function.ψ1(W )

is the main or baseline effect of W, and ψ2(W ) is the interaction of Z∗ and W . All
the theorems for Z = (1, Z∗)T and ψ(W ) = (ψ1(W ), ψ2(W ))T hold true. Chen and
Tong (2010) considered the same model (2) for the situation without a cured group,
and one can find more discussion on the model there and below. Without Z and W ,
model (2) is commonly referred to as the linear transformation model and has been
extensively investigated for the analysis of failure time data. For the cure probability
η in model (1), it will be assumed that it follows the following logistic model given
covariates U .

P(η = 1|U ) = π(Uγ ) = eU T γ

1 + eU T γ
. (3)

Here γ is a d-dimensional vector of regression parameters, and U denotes the covari-
ates that may have effects on η and could be different from or a part of (X , Z , W ). Let
Λ denote the cumulative hazard function of ε. Then under the assumptions above, we
have

P(T ≥ t |X , Z , W , U ) = P(T ≥ t, η = 0|X , Z , W , U ) + P(T ≥ t, η = 1|X , Z , W , U )

= 1 − π(U T γ ) + π(U T γ ) exp(−Λ[log H(t) + X T β + Zψ(W )]) .

For the description of the observed data, suppose that there exists a right-censoring
time denoted by C , assumed to be independent of T ∗ and η given covariates
(X , Z , W ). Also suppose that there exists an administrative stopping time denoted
by τ and define T̃ = min(T ,min{C, τ }) and δ = I (T̃ ≤ min{C, τ }), which are the
observed failure time and censoring indicator, respectively. Then the observed data
consist of {Oi = (Xi , Zi , Wi , Ui , T̃i , δi ) : i = 1, . . . , n}, and the i.i.d. copies of
O = (X , Z , W , U , T̃ , δ). In general, η is unobservable, but if δ = 1, η equals one.
Define θ = (β, γ, ψ, H). Then the log likelihood function of θ has the form
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ln(θ) =
n∑

i=1

δi

(
logπ(U T

i γ ) − Λ[Vi (θ)] + log λ[Vi (θ)] + log
ΔH(T̃i )

H(T̃i )

)

+(1 − δi ) log

(
1 − π(U T

i γ ) + π(U T
i γ ) exp(−Λ[Vi (θ)])

)
, (4)

where λ(t) = d�(t)/dt, Vi (θ) = log H(T̃i ) + X T
i β + Ziψ(Wi ) and �H(t) =

H(t) − H(t−). Here we will restrict H(t) to be a nondecreasing step function with
H(0) = 0 and it jumps only at t1 < · · · < tm , the observed true failure times,
where t1 > 0, tm < τ and m = ∑n

i=1 δi . Note that in the log likelihood function
above, the term log(0) may occur but does not have any effect since one only needs to
calculate ΔH(t) and related terms at the distinct observed event times, where δi = 1.
For completeness, we will define log(0) and also in the following, without loss of
generality, we assume that W has the support on [0, 1].

3 Sievemaximum likelihood estimation

In this section we discuss estimation of the parameters θ = (β, γ, ψ, H) and present a
sievemaximum likelihood estimation procedure. For this, assume that (βT , γ T )T ∈ B,
a bounded open subset of R p+d , and define

Ψr = {ψ : |ψ(l)(w1) − ψ(l)(w2)| ≤ M|w1 − w2|r−l , for any w1, w2 ∈ [0, 1]} ,

and let H = {H : H(·) be a nondecreasing right continuous function, H(τ ) < M},
where M > 0 is a constant and r > 1/2. Also let K = Kn be the integer part of nv

with 0 < v < 0.5 and {Bi (·), i = 1, . . . , qn} denote the normalized B-spline basis
functions in the space of B-spline functions of order l + 1 with qn = Kn + l and the
knots 0 = ξ0 < ξ1 < · · · < ξKn−1 < ξKn = 1, satisfying max(ξ j − ξ j−1 : j =
1, . . . , Kn) = O(n−v) (Schumaker 1981).

Define Bn(·) = {B1(·), . . . , Bqn (·)}T , a vector of qn-dimensional functions. We
will define the estimator, denoted by θ̂n = (β̂n, γ̂n, ψ̂n(w) = Bn(w) α̂n, Ĥn), of θ as
the value that maximizes the log likelihood function ln(θ) over Θ = B × Ψr × H
with ψ(w) = Bn(t) α. For the determination of θ̂n , it is apparent that the direct
maximization of ln(θ) may not be easy to do due to the large number of parameters
involved. Also the score functions for β, γ and α are actually quite complex. To deal
with this, we will develop an EM algorithm.

For the EM algorithm, we assume that the ηi ’s are known and treat them and the
observed data Oi ’s together as pseudo-complete data. The pseudo likelihood function
then has the form

L E M (θ) =
n∏

i=1

(
π(U T

i γ ) exp(−Λ(V ∗
i (θ)))λ(V ∗

i (θ))
ΔH(T̃i )

H(T̃i )

)δi ηi

×
(
1 − π(U T

i γ )
)(1−δi )(1−ηi )

(
π(U T

i γ ) exp(−Λ(V ∗
i (θ)))

)ηi (1−δi )

,
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where V ∗
i (θ) = log H(T̃i ) + X∗T

i θ∗, X∗T = (Z , Bn(W )), and θ∗T = (β, α). It
follows that the log-likelihood function is

l E M (θ) =
n∑

i=1

ηi log{π(U T
i γ )} + (1 − δi )(1 − ηi ) log{1 − π(U T

i γ )} + δiηi

{
− Λ(V ∗

i (θ)) + log λ(V ∗
i (θ)) + logΔH(T̃i ) − log H(T̃i )

}
− (1 − δi )ηiΛ{V ∗

i (θ)} .

For the E-step of the EM algorithm, it is easy to see that one needs to evaluate the
conditional expectation E(ηi |Oi , θ) for given θ . For this, given Oi and θ , we have

P(ηi = 1|Xi , Zi , Wi , T̃i , δi = 0, θ) = π(U T
i γ ) exp(−Λ(V ∗

i (θ)))

π(U T
i γ ) exp(−Λ(V ∗

i (θ))) + 1 − π(U T
i γ )

and P(ηi = 1|Xi , Zi , Wi , T̃i , δi = 1, θ) = 1.
Denote the expectation of η conditional on O, θ with respect to l E M (θ) by l̃ E M (θ).

For theM step, we need to maximize l̃ E M (θ). The EM algorithm for the determination
of θ̂n = (β̂n, γ̂n, ψ̂n(w) = Bn(w) α̂n, Ĥn) can be summarized as follows, where
Ĥn = ∑m

i=1 h j I (t ≥ t j ), h j = �H(t j ) = H(t j ) − H(t j−), j = 1 · · · m.

Computational algorithm

– Step 0: Take 0 as the initial values for β and γ , inv(BT
n Bn)BT

n ψn(w) for α and
1/n for h j with n samples, where Bn is the cubic B-splines with number of knots
K . Take 2 sin(2w + 0.1) + exp(−0.5w) as the initial function for ψn(w).

– Step 1: At the sth iteration, compute the expectation E(ηi |Oi , θ
(s)).

– Step 2: Determine the updated estimate ĥ(s+1)
j of h j by solving the expectation of

the first derivatives h j of l E M (β(s), γ (s), ψ(s), H (s)) setting to be equal to zero.

– Step 3: Determine the updated estimate γ̂
(s+1)
n of γ by solving the expectation of

the first derivatives γ of l E M (β(s), γ (s), ψ(s), H (s+1)) setting to be equal to zero.
– Step 4: Determine the updated estimate β̂

(s+1)
n and α̂

(s+1)
n of β and α by solving

the expectation of the first derivatives β and α of l E M (β(s), γ (s+1), ψ(s), H (s+1))

setting to be equal to zero.
– Step 5: Repeat Steps 1–4 above until convergence.

Note that the procedure described above divides the equations into three parts to
avoid performing optimization algorithms in a high dimensional situation, and some
comments on the computational algorithm of nonparametric hazard function h j can
be found in Zeng and Lin (2006). For the implementation of the estimation procedure
above, it is apparent that one needs to choose l + 1, the order of B-spline functions.
In general, cubic splines (l = 3) are good enough to approximate unknown functions
smoothly, and it is also common to use linear (l = 1) or quadratic (l = 2) splines,
especially for less smooth functions. The number of knots for the B-spline is for
controlling the roughness of functions and one can choose the optimal choice of knots
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(K ) through the BIC criterion as discussed in Sect. 6 among others. In the numerical
studies below, MATLAB is used for implementing the algorithm here.

4 Asymptotic properties

Now we establish some asymptotic properties of the estimator θ̂n . For this, let θ0
denote the true value of θ and define

ρ(θ1, θ2) = ‖β1 − β2‖ + ‖γ1 − γ2‖ + |ψ1 − ψ2|∞ + |H1 − H2|∞
for θ j = (β j , γ j , ψ j , Hj ) ∈ Θ , j = 1, 2, where ‖ · ‖ denotes the Euclidean norm.
First we give the consistency of θ̂n . In the following, all limits are with respect to
n → ∞.

Theorem 1 Suppose that the conditions (C1)–(C7) given in the “Appendix” hold, then
we have

ρ(θ̂n, θ0) = Op(n
−(1−v)/2 + n−rv)

for 0 < v < 0.5 and r > 0.5.

The theorem above shows that the estimator θ̂n not only is consistent, but also
achieves the optimal convergence rate. This is because with v = 1/(2r + 1), the
convergence rate of ψ̂n(·) is equal to n−r/(2r+1), the optimal global convergence rate of
the nonparametric regression estimators (Stone 1980, 1982). To present the asymptotic
distribution, let ξ̂n = (β̂T

n , γ̂ T
n )T and ξ0 denote the true value of ξ = (βT , γ T )T .

Theorem 2 Suppose that 0.25/r < v < 0.5 and the conditions (C1)–(C9) given in
the “Appendix” hold, then we have

n1/2(ξ̂n − ξ0) = 1√
n

I −1(ξ0)

n∑

i=1

l̇∗ξ (ξ0) + op(1) → N (0, I −1(ξ0))

in distribution, where l̇∗ξ (ξ0) and I (ξ0) denote the efficient score and information
matrix of ξ , respectively, and both are given in the “Appendix”.

The proofs of the results above are sketched in the “Appendix”. In addition to
the asymptotic normality, the theorem above also indicates that the estimator ξ̂n is
asymptotically efficient. Although one can derive the information matrix I (ξ0), it
would be very difficult to give a consistent estimator of I (ξ0). Thus to estimate the
covariance matrix of ξ̂n , by following Zeng et al. (2005) and Chen and Tong (2010),
we suggest to treat the problem as a parametric estimation problem and to employ the
observed Fisher information matrix of all parameters. More specifically, letΣn denote
the (p + d + qn + m) × (p + d + qn + m) negative Hessian matrix of ln(β, γ, α, H)

evaluated at the estimator θ̂n . Then the covariance matrix of ξ̂n can be consistently
estimated by the upper-left (p + d) × (p + d) sub-matrix of Σ−1

n .
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5 A simulation study

This section presents some of the results obtained from the simulation study to evaluate
the limited sample performance of the sievemaximum likelihood estimation procedure
presented in the previous sections. In the study, we take H(t) = t/2 and ψ(w) =
2 sin(2w +0.1)+ exp(−0.5w) in model (2) and generate X and Z from the Bernoulli
distribution with the probability of success 0.5 and the uniform distribution [0, 2],
respectively. We use the cubic B-splines for Bn(·) with the number of knots being
1.5n1/3 and the knots chosen to be equally spaced over [0, 1]. In addition, we consider
the effect of linear covariates and varying covariates on cure rate, as describe below
and discuss in Sect. 7.

5.1 Linear covariate effects on the cure rate

We set U = (1, X)T and generate W , considering whether W is independent of Z .
One is (a) assuming W is independent of Z and follows a uniform distribution [0, 1],
and the other is (b) assuming W depends on Z ; W ∼ Uni f [0, 0.5] if Z ≤ 1, and
W ∼ Uni f [0.5, 1] otherwise. Tables 1 and 2 present the results on estimation of β

and γ with β = 0 or 1, and ν = 0, 0.5 or 1. We consider γ with three different
cases of (γ1, γ2) : (0.6, 0.6), (− 0.1,− 0.1), or (− 0.5,− 0.5), which represents that
the treatment group (X = 1) has a low cure rate (23%), moderate cure rate (55%),
or high cure rate (73%), respectively. In each case, we consider n = 200 or 400 with
1000 replications. The results include the average of the actual values subtracted from
the estimated mean (Bias), estimated sample standard derivation (SSD), estimated
standard error mean (ESE), and empirical 95% coverage probability (CP). The results
in Table 1 are n = 200, and Table 2 corresponds to the case of n = 400.

5.2 Varying covariate effects on the cure rate

The generations of X , Z and W are the same set-up shown in Sect. 5.1. We consider

varying covariate effects on the cure rate, P(η = 1|U1, U2, W ∗) = eU T
1 γ+U2ψ∗(W∗)

1+eU T
1 γ+U2ψ∗(W∗)

.

We take ψ∗(w∗) = 8w∗(1−w∗′
w∗), set U1 = (1, X)T , U2 = Z , and generate W ∗ in

two scenarios. The first scenario is that (c) both W and W ∗ are independent of Z and
followUni f [0, 1]. The second scenario is that (d) bothW andW ∗ followUni f [0, 0.5]
if Z ≤ 1, then Uni f [0.5, 1] otherwise. We consider the similar parameter settings
mentioned in Sect. 5.1 above. Based on 1000 replicates, the results are shown in
Table 3, n = 400.

In addition, we assume that the censoring time C follows the uniform distribution
(0, τ ), and the stop time τ is set tomin(40, max(T ∗)).We also specify that the general
form of the baseline hazard function is exp(t)/{1 + ν exp(t)}, where τ represents the
maximum follow-up time and ν is a constant. In the case of ν = 0, model (2) gives
the proportional hazard model, which gives a proportional odds model with ν = 1.
Figures. 1 and 2 show ψ(·) and ψ∗(·) of case (c), n = 400, respectively, where
(β, γ1, γ2) = (1,− 0.5,− 0.5). Figures 3 and 4 show ψ(·) and ψ∗(·) of case (d),
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Fig. 1 The estimation ofψ(·) and true curve (black)with case (c). ν = 0 (red); ν = 0.5 (blue); ν = 1 (green)
(Color figure online)
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Fig. 2 The estimation of ψ∗(·) and true curve (black) with case (c). ν = 0 (red); ν = 0.5 (blue); ν =
1 (green) (Color figure online)

n = 400, respectively, where (β, γ1, γ2) = (1,− 0.5,− 0.5). It can be clearly seen
from the tables and figures that the proposed estimator seems to be unbiased and
the variance estimate seems reasonable. The normal approximation of the proposed
estimator distribution works well.

6 An illustration

To illustrate the approach presented in the previous sections, we apply it to the kidney
transplant data discussed by Klein and Moeschberger (2003) among others. This data
consists of 863 kidney transplant patients with information on the age, gender and
race of the subjects. Among them, 432 are white males, 92 are black males, 280 are
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Fig. 3 The estimation ofψ(·) and true curve (black)with case (d). ν = 0 (red); ν = 0.5 (blue); ν = 1 (green)
(Color figure online)
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Fig. 4 The estimation of ψ∗(·) and true curve (black) with case (d). ν = 0 (red); ν = 0.5 (blue); ν =
1 (green) (Color figure online)

white females, and 59 are black females, with an average age of 42.8 years and a
range of 9.5 months to 74.5 years. If the patient is unavailable for follow-up on June
30, 1992 (at the end of the study) or if they are still alive, they are censored. A major
feature of this data is a high right-censored rate of 84%. To illustrate this, Fig. 5a, b
show Kaplan–Meier (KM) estimates of survival function from kidney transplantation
to failure time, interest failure time, gender, and race, respectively. It can be seen that
the two curves show a leveling away from zero at the tail, which means that there may
be a nonsusceptible subgroup in the study. In the analysis below, we will focus on
assessing the possible effects of age, gender and race from kidney transplantation to
failure.
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Fig. 5 a KM curves with respect to gender. b KM curves with respect to race

Fig. 6 a KM curves with respect to age for males. b KM curves with respect to age for females. c KM
curves with respect to age for blacks. d KM curves with respect to age for white

For the analysis, we first adapt the data to the Coxmodel with respect to each covari-
ate and found that both gender and race are not significant but age is. Furthermore, we
look at the linear interactions between either gender to age or race to age, and none of
them are significant. Figure 6a–d present the plots of the KM curves for male, female,
black and white patients stratified by age (< 25, 25−40, > 40), respectively. It can
be seen that there is a cross survival curve, which means that the effects may interact
non-linearly. Therefore, we should consider the varying coefficient effects. Let W be
the age and Z∗ be the gender or race. Based on the analysis above, we obtain the
following transformation cure model with varying coefficients

logH(T ∗) = −ψ1(w) − Z∗ψ2(w) + ε ,

P(η = 1|W ) = eψ3(w)/(1 + eψ3(w)) .

Hereψ1(w) characterizes themain effect of age (W ). Z∗ represents gender or race, and
ψ2(w) depicts the susceptible effect of female or black patients of different ages. Since
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the long-term survivors are closely related to age, we consider ψ3(w) as an unknown
smooth curve for non-susceptibility. For the analysis we used the cubic spline (l = 3)
and specified the baseline hazard function of ε as et/(1 + et ). For the selection of ν

and the knot number K of the B-spline, we applied the BIC criterion that minimizes

B I C(ν, K ) = −2L L F + p(K + l) × log(N ) ,

where L L F is the log likelihood function with all parameters replaced by their esti-
mates associatedwith ν, K . N and p represent numbers as observations and smoothing
functions, respectively. The optimal choice is given by ν = 0 (Coxmodel) and K = 9,
which is used throughout this section.

Figure 7a, b depict estimates of ψ1(w) with Z∗ (gender or race), and it can be seen
that the estimates are usually positive, and age generally seems to have some negative
impact on the time to failure. As shown in Fig. 7c (female), the estimated ψ2(w)

suggests that kidney transplantationmay be beneficial forwomen under 25 years of age
and women aged 40–55 years. Figure 7d (black) indicates that kidney transplantation
is beneficial for black patients between the ages of 25 and 40. Furthermore, Fig. 7e, f
also display an estimated ψ3(w), indicating that age generally has a negative impact
on patients who are less susceptible to infection. In other words, younger patients have
higher cure rates.

We consider the above-mentioned model (logH(T ∗) = −ψ1(w) − Z∗ψ2(w) +
ε , P(η = 1|W ) = eψ3(w)/(1+eψ3(w)) ). Next, we consider the logistic model P(η =
1|W ) = eU T γ /(1+eU T γ ) of a cure rate (U represents age), and the estimated value of
γ is (−3.78, 0.47) or (- 3.70, 0.46) with Z∗ female or black, respectively. In addition
to the above model, we also consider the model logH(T ∗) = −Zψ(w) + ε of ν = 0
and K = 9 to investigate the varying coefficient Zψ(w)without the primary influence
of age (W ), where Z represents gender or race. For this situation, the estimated γ is
(−14.26, 0.68) or (−8.16, 0.41), and Z is female or black, respectively, and again the
age seems to have some significant negative effects on the cure rate as above. Figure 7g,
h give the estimatedψ(w), where Z represents female or black, respectively. It is again
proven that a kidney transplant benefits women between the ages of 22 and 40, and
blacks between 25 and 40 years old.

7 Discussion and concluding remarks

This article presented a class of varying coefficient cure models that allows covariates
to interact nonlinearlywith susceptible and nonsusceptible subjects. For the purpose of
inference, a sieve maximum likelihood estimation procedure was developed with the
use of B-spline functions. The EM algorithm was also provided, and the asymptotic
properties of the estimator were established. The main contribution of the proposed
method is that it allows for the presence of a set of cures and possible time-varying or
varying covariate effects. In addition, simulation studies have shown that the proposed
method is applicable to the actual situation.

The proposed method can be seen as an extension of Chen and Tong (2010), who
considered only the susceptible subgroup. It is well known that in the presence of
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Fig. 7 a ψ̂1(w) by Z∗ =gender under Cox model. b ψ̂1(w) by Z∗ = race under Cox model. c ψ̂2(w) by
Z∗ =gender under Cox model. d ψ̂2(w) by Z∗ = race under Cox model. e ψ̂3(w) by Z∗ =gender under
Cox model. f ψ̂3(w) by Z∗ = race under Cox model. g ψ̂(w) by Z =gender under Cox model. h ψ̂(w)

by Z = race under Cox model
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a cured subgroup, ignoring this subgroup may lead to biased estimates and lead to
incorrect conclusions. On the other hand, one may take the existence of a cured sub-
group into consideration. A common method of graphical inspection is to check if
there is some leveling effect away from zero at the end of the survival curve. It would
be helpful if some testing procedures can be developed to see if patients are cured or
not.

Note that in the above, we have assumed that there exist some varying covariate
effects on the failure time of interest, and correspondingly this may be true for the
cure rate in practice. Actually it is straightforward to generalize the inference approach
proposed above to this lattermore general situation.More specifically, instead ofmodel
(3), one may consider the following varying covariate effect model

P(η = 1|U1, U2, W ) = eU T
1 γ+U2ψ

∗(W )

1 + eU T
1 γ+U2ψ∗(W )

,

whereU1 andU2 are covariate vectors asU andψ∗(·) is an unknown smooth function
like ψ(·). Here also as with ψ(·), one may employ B-spline functions to approximate
the unknown function ψ∗(W ) and develop an inference procedure similarly as above.
Another issue that onemight consider for future research is to developmethods to deter-
mine which covariates have linear effects and which covariates have non-parametric
effects. In addition, it would be helpful to build some hypothesis testing procedures
to check if the smoothing function is significant.
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Appendix: Proofs of the asymptotic properties of �̂n

In this appendix, we sketch the proofs for the two theorems described in Sect. 3. For
this, we first define some notation and give the required regularity conditions. For
given random variable X , measurable function f and probability measure P , define
P f (X) = ∫

f d P , Pn f (X) = n−1 ∑n
i=1 f (Xi ) andGn f (x) = n−1/2 ∑n

i=1{ f (Xi )−
P f }, where the Xi ’s denote a randomsample of X . Also for a function f , let f (l) denote
its lth derivative and ḟ (·) and f̈ (·) the first and second derivatives of f , respectively.
The following regularity conditions are needed.

(C1). The true value (βT
0 , γ T

0 )T is an interior point of a known compact set B in
R p+d .

(C2). The function H0 is strictly increasingwith H0(0) = 0, Ḣ0(0) > 0 and H0(τ ) <

M.
(C3). The covariates X , W and Z are uniformly bounded.
(C4). The distribution of the error term ε has support R, and its hazard function λ(t)

has a continuous second derivative with limt↓0 λ(log t)/t > 0.
(C5). Assume that ψ0 ∈ Ψr and r > 0.5, 0 < v < 0.5.
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(C6). The failure time T and the censoring time C are conditionally independent
given the covariates (X , Z , W ) with inf P(ηT ∗ > τ, C > τ |X , Z , W ) > 0.

(C7). For any t ∈ R, we have log λ(t) − Λ(t) < 0 and log λ(t) − Λ(t) → −∞ as
t → ∞.

(C8). There exist unique h∗ ∈ T (H) and ψ∗ ∈ Ψr such that for any h ∈ T (H) and
ψ1 ∈ Ψr , we have

E

[
l̈ξ H (θ0)[h] − l̈ψ H [ψ∗, h] − l̈H H [h∗, h]

]
= 0

and

E

[
l̈ξψ(θ0)[ψ] − l̈ψψ [ψ∗, ψ1] − l̈Hψ [h∗, ψ]

]
= 0 .

Here l̈ξ H (θ0)[h] = {dl̇ξ (ξ0, ψ0, H0 + t
∫

hd H0)/dt}|t=0 and other two quan-
tities are defined similarly.

(C9). The information matrix

I (θ0) = E

[
l̈ξξ (θ0) − l̈ξψ(θ0)[ψ∗] − l̈ξ H (θ0)[h∗]

]

is nonsingular.

For a large M that may possibly depend on n, let 0 = a0 < a1 < · · · < aM = τ

be a sequence of points in [0, τ ] such that E{δ I (T̃ ∈ R j )} = E(δ)/M , where R j =
(a j−1, a j ], j = 1, . . . , M . For any θ = (β, γ, H , ψ) ∈ Θ , define the function

g(x, z, w, u, t, d; θ) = d

(
logπ(uT γ ) − Λ[V (t; θ)] + log λ[V (t; θ)]/H(t)

)

+ d
∑M

j=1 I (t ∈ R j ) log[{H(a j ) − H(a j−1)}/{E(δ)/M}]
+ (1 − d) log

(
1 − π(uT γ ) + π(uT γ ) exp(−Λ[V (t; θ)])

)
,

where V (t; θ) = log H(t) + xT β + zψ(w).
Also let l∗(θ) = g(X , Z , W , U , T̃ , δ; θ) and for any θ ∈ Θ ,

l∗n (θ) = ∑n
i=1g(Xi , Zi , Wi , Ui , T̃i , δi ; θ)

+∑n
i=1δi

∑M
j=1 I (T̃i ∈ R j )[log{E(δ)/M} − log(m jn/n)],

where m jn = ∑n
i=1 δi I (T̃i ∈ R j ). Define

θ̂∗
n = (β̂∗

n , γ̂n, Ĥ∗
n , ψ̂∗

n ) = argmaxθ∈Θn
l∗n (θ) and

θ∗
0 = (β∗

0 , γ ∗
0 , H∗

0 , ψ∗
0 ) = argmaxθ∈Θ E{l∗(θ)}.
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It follows from Corollary 4.10 of Schumaker (1981) that there exist vectors α0n ∈ Rqn

and α∗
0n ∈ Rqn such that

sup
w

|ψ0n(w) − ψ0(w)| = O(n−rv) and sup
w

|ψ∗
0n(w) − ψ∗

0 (w)| = O(n−rv),

where ψ0n(w) = Bn(w)T α0n and ψ∗
0n(w) = Bn(w)T α∗

0n . Denote θ0n =
(β0, γ0, H0, ψ0n) and θ∗

0n = (β∗
0 , γ ∗

0 , H∗
0 , ψ∗

0n). Then

ρ(θ0, θ0n) = O(n−rv) and ρ(θ∗
0 , θ∗

0n) = O(n−rv). (A1)

The following lemmas will be used in the proof of Theorems 1 and 2.

Lemma 1 Assume that conditions (C1)–(C6) hold, then we have that

ρ(θ̂∗
n , θ∗

0n) = Op(n
−(1−v)/2) and ρ(θ̂∗

n , θ∗
0 ) = Op(n

−(1−v)/2 + n−rv).

Proof Let η be a small and fixed positive number. Define a function class

Γ (η) = {g(x, z, w, u, t, d; θ) : ρ(θ, θ∗
0n) ≤ η}.

Since H is nondecreasing bounded function, Theorem 2.7.5 of van der Vaart and
Wellner (1996) yields that for any 0 < ξ < η, the logarithm of the bracketing number
N[](ξ, Γ , ρ) for the function class Γ (η) satisfy

log N[](ξ, Γ , ρ) ≤ Aη/ξ + Aqn log(η/ξ), (A2)

by condition (C4), the monotonicity of functions H(·), Λ{log(·)} and log(·), where A
is a constant not depending on n (van der Vaart andWellner 1996). Let J[](η, Γ , ρ) =∫ η

0 {1 + log N[](ξ, Γ , ρ)}1/2dξ be the integral entropy. It follows from (A2) that

J[](η, Γ , ρ) ≤ A1q1/2
n η, (A3)

where A1 > 0 is a constant depending only on A. Then (A3) and Lemma 3.4.2 in van
der Vaart and Wellner (1996, page 324) imply that for sufficiently large n,

E
(
supη/2≤ρ(θ,θ∗

0n)≤η, θ∈Θ

∣∣∣
1

n
{l∗n (θ) − l∗n (θ∗

0n)} − [E{l∗(θ)} − E{l∗(θ∗
0n)}]

∣∣∣
)

≤ n−1/2 J[](η, Γ , ρ){1 + A2 J[](η, Γ , ρ)/(η2n1/2)} ≤ A3η(qn/n)1/2,

(A4)

where A2 and A3 are all constants not depending on n.
One can verify that the conditions of Lemma 3.4.1 in van der Vaart and Wellner

(1996, page 322) are all satisfied. It then follows that ρ(θ̂∗
n , θ∗

0n) = Op{(n/qn)−1/2} =
Op(n−(1−v)/2). Applying (A1), we have ρ(θ̂∗

n , θ∗
0 ) = Op(n−(1−v)/2 + n−rv). The

proof is complete. �
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Lemma 2 Assume that conditions (C1)–(C6) hold, then we have that

1

n
l∗n (θ̂∗

n ) − Mmax1≤ j≤M |Ĥ∗
n (a j ) − Ĥ∗

n (a j−1)| ≤ 1

n
ln(θ̂n) + 1

n

∑n

i=1
δi log(n)

≤ 1

n
l∗n (θ̂n) ≤ 1

n
l∗n (θ̂∗

n ), (A5)

where M > 0 is a constant which doesn’t depend on M and n.

Proof Since θ̂∗
n maximizes l∗n (·), l∗n (θ̂n) ≤ l∗n (θ̂∗

n ). For any θ ∈ Θ ,

1

n
ln(θ) + 1

n

n∑

i=1

δi log(n) − 1

n
l∗n (θ)

= 1

n

M∑

j=1

[
log

{ ∏

i :T̃i ∈R j

ΔH(T̃i )
}

− log
{ H(a j ) − H(a j−1)

m jn

}m jn
]

≤ 0.

Therefore the second inequality of (A5) holds. Define H̃n(t) as the step function with
the same jump points as those of Ĥ∗

n such that, for any jump points T̃i ∈ R j ,

ΔH̃n(T̃i ) = {Ĥ∗
n (a j ) − Ĥ∗

n (a j−1)}/m jn .

Let θ̃n = (β̂∗
n , γ̂ ∗

n , H̃n, ψ̂∗
n ). By the uniform boundedness of X , Z , W , there exists a

fixed large M0 > 0 such that supi,θ∈Θn
vi (θ) ≤ M0 where vi (θ) = exp(Vi (θ)). By

condition (C4) and (C5), a direct calculation using mean value theorem gives that

(1/n){l∗n (θ̃n) − l∗n (θ̂∗
n )}

= 1

n

n∑

i=1

δi

(
log

[λ{log vi (θ̃
∗
n )}

vi (θ̃∗
n )

]
− log

[λ{log vi (θ̂n)}
vi (θ̂n)

])

−1

n

n∑

i=1

δi

[
−Λ{log vi (θ̃n)} − Λ{log vi (θ̂n)}

]

+1

n

n∑

i=1

(1 − δi )
[
log(1 − π(U T

i γ̂ ∗
n ) + π(U T

i γ̂ ∗
n ) exp(−Λ{log vi (θ̃

∗
n )}))

− log(1 − π(U T
i γ̂ ∗

n ) + π(U T
i γ̂ ∗

n ) exp(−Λ{log vi (θ̂
∗
n )}))

]

≥ −A4
1

n

n∑

i=1

|H̃n(T̃i ) − Ĥ∗
n (T̃i )| exp{X T

i β̂∗
n + Zi ψ̂

∗
n (Wi )}

≥ −A4 sup
1≤i≤n

exp{X T
i β̂∗

n + Zi ψ̂
∗
n (Wi )} max

1≤ j≤M
|Ĥ∗

n (a j ) − Ĥ∗
n (a j−1)|

≥ −A4M0 max1≤ j≤M |Ĥ∗
n (a j ) − Ĥ∗

n (a j−1)|,
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where

A4 = sup
0≤v≤M0

(
| d

dv
log[λ{log(v)}/v]| + |λ{log(v)}/v| + λ{log(v)}

)

is a constant not depending on M and n. As θ̂n is the maximizer of ln(θ) and l∗n (θ̃n) =
ln(θ̃n)+∑n

i=1 δi log(n), we have ln(θ̂n)+∑n
i=1 δi log(n) ≥ l∗n (θ̃n). The first inequality

of (A5) follows and thus the proof is complete. �

Lemma 3 Assume that conditions (C1)–(C6) hold and let M = Mn = O(n1−γ ) with
γ < v, then we have that

M max
j=1,...,M

{Ĥ∗
n (a j ) − Ĥ∗

n (a j−1)} = Op(1). (A6)

Proof Define a function of (x, z, w, u, t, d) for every given (θ, a) as

φ(x, z, w, u, t, d; θ, a) = I (t ≥ a) exp{xT β + zψ(w)}
×

(
dG[H(t) exp{xT β + zψ(w)}] − d

Ġ[v(t; θ)]
G[v(t; θ)]

+ (1 − d)
π(uT γ ) exp(−Λ(log[v(t; θ)]))λ(log[v(t; θ)])
1 − π(uT γ ) + π(uT γ ) exp(−Λ(log[v(t; θ)]))

)

where G(s) = log{λ(s)}/s and v(t; θ) = H(t) exp{xT β + zψ(w)}. Similar to (A2)–
(A4), one can show that the class of functions of (x, z, w, u, t, d),

{
φ(x, z, w, u, t, d; θ, a) : θ ∈ Θ, ρ(θ, θ∗

0n) ≤ η, a ∈ [0, τ ]
}

is a Glivenko-Cantelli class. It then follows from Lemma 1 that, as n → ∞,

sup
a∈[0,τ ]

∣∣∣
1

n

n∑

i=1

φ(Xi , Zi , Wi , Ui , T̃i , δi ; θ̂∗
n , a) − μ(θ∗

0 , a)

∣∣∣ → 0 (A7)

in probability, where

μ(θ∗
0 , a) = E{ψ(X , Z , W , U , T̃ , δ; θ∗

0 , a)}

is continuous in a ∈ [0, τ ].
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Differentiate l∗n with respect toΔH(T̃( j)), where T̃( j) = max{T̃i : T̃i ∈ R j , δi = 1},
one obtains

Ĥ∗
n (a j ) − Ĥ∗

n (a j−1) = (m jn/n)/

{
(1/n)

n∑

i=1

φ(Xi , Zi , Wi , Ui , T̃i , δi ; θ̂∗
n , T̃( j))

}−1

≤ (m jn/n)/

{
(1/n)

n∑

i=1

φ(Xi , Zi , Wi , Ui , T̃i , δi ; θ̂∗
n , a j )

}−1

(A8)

The boundedness of Ĥ∗
n ∈ Hn implies the left hand side is uniformly bounded. By

taking fixed a j , a j−1 one can see the denominator on the right hand side is uni-
formly bounded below away from 0. It then follows from (A7) and condition (C5) that
infa∈[0,τ ] μ(θ∗

0 , a) > 0. Combining (A7) and (A8), we have

sup
1≤ j≤M

(n/m jn)|Ĥ∗
n (a j ) − Ĥ∗

n (a j−1)| = Op(1).

Since E(m jn)/n = E(δ)/M , the uniform convergence of empirical distribution
ensures that sup1≤ j≤M |m jn/n − E(δ)/M | → 0. Then (A6) follows. The proof is
complete. �

Given the lemmas above, we now present the proofs of Theorems 1 and 2.

Proof of Theorem 1.

Step 1. We first show that θ̂n exists and is finite. It is easy to check that

n−1ln(θ̂n) < Op(1) + Pn[log λ(V (θ̂n)) − Λ(V (θ̂n))] → −∞

if there exists a Ĥn(Ti ) = ∞ such that Vi (θ̂n) = ∞.
Step 2. We show that supn Ĥn(τ ) < ∞. Let ξn = Ĥn(τ ), H̄n(t) = Ĥn(t)/ξn and
V̄i (θ) = log H̄n(T̃i ) + X T

i β + Ziψn(Wi ). Since θ̂n maximizes ln(θ), then

0 ≤ n−1[ln(β̂n, γ̂n, ψ̂n, Ĥn(τ )) − ln(β̂n, γ̂n, ψ̂n, H̄n(τ ))]
= 1

n

n∑

i=1

δi [log λ(log ξn + V̄i (θ̂n)) − Λ(log ξn + V̄i (θ̂n))] + Op(1)

yielding that

1

n

n∑

i=1

δi [log λ(log ξn + V̄i (θ̂n)) − Λ(log ξn + V̄i (θ̂n))] ≥ Op(1),

and thus by Condition (C7) that 1
n

∑n
i=1 δi [log λ(log ξn + V̄i (θ̂n)) − Λ(log ξn +

V̄i (θ̂n))]I (η = 0, Ci ≥ τ) ≥ Op(1). If ξn → ∞, then 1
n

∑n
i=1 δi [log λ(log ξn +
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V̄i (θ̂n))−Λ(log ξn +V̄i (θ̂n))]I (T̃i ≥ τ) = inf i log f (log ξn +Xi β̂n +Zi ψ̂n(Wi ))Eδi I
(T̃i ≥ τ), which tends to -∞ if ξn → ∞.
Step 3. We prove that ρ(θ̂n, θ0) = Op(n−(1−v)/2 + n−rv). Let M = Mn = O(n1−γ )

with γ < v. Lemma 2 gives

0 ≤ (1/n){l∗n (θ̂∗
n ) − l∗n (θ̂n)} ≤ M max

1≤ j≤Mn
|Ĥ∗

n (a j ) − Ĥn(a j−1)|.

Hence Lemma 3 ensures

(1/n)|l∗n (θ̂∗
n ) − l∗n (θ̂n)| = Op(n

−(1−γ )),

yielding

ρ(θ̂n, θ̂
∗
n ) = Op(n

−(1−γ )/2).

Analogously, one can show ρ(θ0, θ
∗
0 ) = Op(n−(1−γ )/2). Applying the triangle

inequality and Lemma 1, we have, for γ < v,

ρ(θ̂n, θ0) ≤ ρ(θ̂n, θ̂∗
n ) + ρ(θ̂∗

n , θ∗
0 ) + ρ(θ∗

0 , θ0)

= Op(n−(1−v)/2 + n−rv + n−(1−γ )/2)

= Op(n−(1−v)/2 + n−rv).

The proof is complete.

Proof of Theorem 2.

Denote ψ∗
n as the projection of ψ∗ into the space spanned by the B-spline basis

functions. According to Schumaker (1981), we have that

|ψ∗ − ψ∗
n |∞ = O(n−rv). (A9)

By Taylor expansion, we can have the following equations:

0 = Pnl̇ξ (θ̂n) = Pnl̇ξ (θ0) + Pnl̈ξξ (θ0)(ξ̂n − ξ0)

+Pnl̈ξψ (θ0)[ψ̂n − ψ0] + Pnl̈ξ H (θ0)[Ĥn − H0] + Op(ρ
2(θ̂n, θ0)),

0 = Pnl̇ψ(θ̂n)[ψ∗
n ] = Pnl̇ψ(θ0)[ψ∗

n ] + Pnl̈ψξ (θ0)[ψ∗
n ](ξ̂n − ξ0)

+Pnl̈ψψ(θ0)[ψ∗
n , ψ̂n − ψ0] + Pnl̈ψ H (θ0)[ψ∗

n , Ĥn − H0] + Op(ρ
2(θ̂n, θ0))

= Pnl̇ψ(θ0)[ψ∗] + Pnl̈ψξ (θ0)[ψ∗](ξ̂n − ξ0) + Pnl̈ψψ(θ0)[ψ∗, ψ̂n − ψ0]
+Pnl̈ψ H (θ0)[ψ∗, Ĥn − H0] + Op(ρ

2(θ̂n, θ0) + |ψ∗
n − ψ∗|∞ρ(θ̂n, θ0)),

and

0 = Pnl̇H (θ̂n)[h∗] = Pnl̇H (θ0)[h∗] + Pnl̈Hξ (θ0)[h∗](ξ̂n − ξ0)

+Pnl̈Hψ(θ0)[h∗, ψ̂n − ψ0] + Pnl̈H H (θ0)[h∗, Ĥn − H0] + Op(ρ
2(θ̂n, θ0)).
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It follows form Theorem 1 with the conditions 0.25/r < v < 0.5 and (A9) that
|ψ∗

n − ψ∗|∞ρ(θ̂n, θ0) = ρ2(θ̂n, θ0) = o(n−1/2). Combing all above equalities with
conditions (C8) and (C9), one obtains that

ξ̂n − ξ0 =
[

Pn(l̈ξξ (θ0) − l̈ξψ(θ0)[ψ∗] − l̈ξ H (θ0)[h∗])
]−1

× Pn

[
l̇ξ (θ0) − l̇ψ(θ0)[ψ∗] − l̇H (θ0)[h∗]

]
+ op(n

−1/2),

which reduces to the desired results by strong large number law and central limit
theorem.
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